Myogenic vasoregulation overrides local metabolic control in resting rat skeletal muscle.
نویسندگان
چکیده
Microvascular reactions to increases in intravascular pressure were studied in the cremaster muscle of the anesthetized rat by enclosing the animal in an airtight box with the muscle exteriorized for observation of the microcirculation. Since the cremaster was exposed to atmospheric pressure, increasing pressure within the box produced equal increases in arterial and venous pressures. Thus, intravascular pressure was altered without affecting the pressure gradient for blood flow. Raising box pressure had no effect on respiration or heart rate and did not change the systemic activity of the sympathetic system, angiotensin II, or vasopressin. Diameters and flows were measured for first (107 +/- 3 micron, mean +/- SEM), second (87 +/- 5), third (29 +/- 2), and fourth (15 +/- 2) order arterioles during increases in intravascular pressure of +10, +20, and +30 mm Hg. No significant changes in the diameters of first or second order arterioles were elicited when pressure was increased. However, when box pressure was increased to +10, +20, or +30 mm Hg, a sustained constriction occurred in third (29%, 45%, and 63%, respectively) and fourth (5%, 38%, and 57%, respectively) order arterioles. Blood flow was significantly reduced in all arterioles, and perivascular PO2 was decreased adjacent to third and fourth order arterioles. Furthermore, the third order arteriole constrictor response was not abolished by local alpha-receptor blockade (phentolamine), indicating that it was not mediated by a local sympathetic axon reflex. Collectively, these data indicate that a potent, non-neural, pressure-dependent mechanism for vasoregulation is present in small arterioles of the cremaster. The sustained constriction in the presence of reduced blood flow and reduced periarteriolar oxygen tension indicates that the vascular response is independent of and capable of overriding flow-dependent (i.e., metabolic) control in resting skeletal muscle. The observations are compatible with the operation of a powerful myogenic mechanism in small arterioles.
منابع مشابه
Key role of Kv1 channels in vasoregulation.
Small arteries play an essential role in the regulation of blood pressure and organ-specific blood flow by contracting in response to increased intraluminal pressure, ie, the myogenic response. The molecular basis of the myogenic response remains to be defined. To achieve incremental changes in arterial diameter, as well as blood pressure or organ-specific blood flow, the depolarizing influence...
متن کاملAcceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model
MicroRNA (miRNA)s are a class of non-coding RNAs that regulate gene expression post-transcriptionally. Muscle-specific miRNA, miRNA (miR)-1, miR-133 and miR-206 play a crucial role in the regulation of muscle development and homeostasis. Muscle injuries are a common musculoskeletal disorder, and the most effective treatment has not been established yet. The purpose of this study was to demonstr...
متن کاملCirculating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.
Despite increases in muscle sympathetic vasoconstrictor activity, skeletal muscle blood flow and O2 delivery increase during exercise in humans in proportion to the local metabolic demand, a phenomenon coupled to local reductions in the oxygenation state of haemoglobin and concomitant increases in circulating ATP. We tested the hypothesis that circulating ATP contributes to local blood flow and...
متن کاملMyogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats.
Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralatera...
متن کاملIncreased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation.
To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 60 6 شماره
صفحات -
تاریخ انتشار 1987